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Abstract

This paper presents analytical results for high-speed leading-edge noise which may be useful for
benchmark testing of computational aeroacoustics codes. The source of the noise is a convected gust
striking the leading edge of a wing or fan blade at arbitrary subsonic Mach number; the streamwise shape
of the gust is top-hat, Gaussian, or sinusoidal, and the cross-stream shape is top-hat, Gaussian, or uniform.
Detailed results are given for all nine combinations of shapes; six combinations give three-dimensional
sound fields, and three give two-dimensional fields. The gust shapes depend on numerical parameters, such
as frequency, rise time, and width, which may be varied arbitrarily in relation to aeroacoustic code
parameters, such as time-step, grid size, and artificial viscosity. Hence it is possible to determine values of
code parameters suitable for accurate calculation of a given acoustic feature, e.g., the impulsive sound field
produced by a gust with sharp edges, or a full three-dimensional acoustic directivity pattern, or a
complicated multi-lobed directivity. Another possibility is to check how accurately a code can determine
the far acoustic field from nearfield data; a parameter here would be the distance from the leading edge at
which the data are taken.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

This paper is concerned with benchmark testing of computer codes which predict the acoustic
field generated by a convected gust which strikes the leading edge of a high-speed aerofoil or fan
blade. This sound-generation problem, an example of ‘blade-vortex interaction,’ is of
fundamental importance in noise research on turbofan aeroengines and helicopter rotors, and
has in recent years attracted much study by the computational aeroacoustics community. The
author recently obtained an analytical solution for an idealized version of the problem [1]; the
solution, which unifies and generalizes previous work [2–6], gives the full three-dimensional sound
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field, including the near field, when the gust has arbitrary shape in space and time. Thus the gust
may be localized in the span direction of the blade, may be localized in time, and may have sharp
edges. The analytical solution is well suited to numerical evaluation; and its farfield
approximation is simple enough that for analytically specified gust shapes, e.g., single-frequency,
Gaussian, or top-hat, all integrations may be performed analytically. Thus analytical results are
available of the way in which the unsteady three-dimensional sound field depends on properties of
the incoming gust field, e.g., time-domain features such as sharp edges of the gust, or frequency-
domain features described by parameters in a turbulence spectrum; and all results can be
converted between the frequency domain (for acoustics) and the time domain (for computational
fluid dynamics). Two-dimensional sound fields are also readily obtained from the analytical
results. Hence the analysis provides a very large number of exact sound fields which can be used as
benchmark checks of computational aeroacoustics codes. Furthermore, the analysis provides a
simple transfer function between the incoming gust and the source term in the acoustic part of a
code. Our analysis applies to ‘non-compact’ sound generation at the leading edge, i.e., the
frequencies are assumed high enough that the leading edge may be considered separately from the
trailing edge. Thus the problem is one of edge diffraction, and the sound field is neither a
monopole, dipole, nor quadrupole; the analytical theory shows the field to be half-way between a
monopole and a dipole, both in amplitude and directivity. Hence the acoustic field is stronger than
a dipole.
Section 2 of this paper gives the analytical solution in its most general form; for the derivation,

the reader is referred to Ref. [1]. The solution is used in Section 3 to calculate explicitly some
three-dimensional fields, and in Section 4 some two-dimensional fields. Practical considerations in
applying the results to computational aeroacoustics codes are discussed in Section 5.

2. Leading-edge noise

2.1. The boundary-value problem for the acoustic field

The system to be investigated is sketched in Fig. 1, which shows part of a flat-plate aerofoil at
zero angle of incidence in a uniform free stream of air at speed U : The speed of sound in the air is
c0; and the Mach number of the flow is M ¼ U=c0: The flow is assumed subsonic, i.e., Mo1: The
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Fig. 1. Flat-plate aerofoil in a uniform flow of speed U ; co-ordinate systems are ðx; y; zÞ; ðr;f; zÞ; and ðR; y;fÞ: The
aerofoil occupies the half-plane y ¼ 0; xX0 ðf ¼ 0Þ; and its leading edge is the z-axis ðy ¼ 0;pÞ:
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axis Ox points along the plate (assumed horizontal) at right angles to the leading edge and in the
flow direction; the axis Oy points vertically upwards; and the axis Oz points along the leading
edge, horizontally to the right for an observer facing in the positive Ox direction. Corresponding
cylindrical co-ordinates are ðr;f; zÞ; where r is distance from the leading edge and f is azimuthal
angle around the leading edge, measured from the horizontal Oxz plane. The plate occupies the
half-plane f ¼ 0; and the half-plane ahead of the plate is f ¼ p: Corresponding spherical co-
ordinates are ðR; y;fÞ; where R is distance from O and y is polar angle, measured from the
leading-edge direction Oz: The positive half z > 0 of the leading edge is y ¼ 0; and the negative
half zo0 is y ¼ p:
All final results will be expressed in terms of the aeroacoustic co-ordinates ð %x; %y; %zÞ defined by

%x ¼ x=ð1� M2Þ; %y ¼ y=ð1� M2Þ1=2; %z ¼ z=ð1� M2Þ1=2: This choice is not unique but leads to
formulae with the fewest factors of ð1� M2Þ1=2; hence ð %x; %y; %zÞ appear to be the basic similarity
variables for aeroacoustics [7]. Corresponding polar co-ordinates are ð%r; %f; %zÞ and ð %R; %y; %fÞ; defined
by

ð%r; tan %fÞ ¼ ðð %x2 þ %y
2Þ1=2; %y= %xÞ; ð %R; tan %yÞ ¼ ðð%r2 þ %z

2Þ1=2; %r=%zÞ: ð1Þ

All formulae for leading-edge noise depend on %f only through the factor cos 1
2
%f:

A small-amplitude convected gust is now superimposed on the uniform flow. On inviscid linear
theory, the interaction of the gust with the plate occurs only through the vertical component of the
gust velocity in the horizontal plane y ¼ 0; this component has the functional form f ðt � x=U ; zÞ:
Since the total velocity has zero vertical component on the plate, the boundary-value problem
for the acoustic field requires the acoustic velocity on the plate to have vertical component
�f ðt � x=U ; zÞ: Let the undisturbed air have density r0: Then the acoustic velocity u and the
acoustic pressure p may be expressed in terms of a potential jðt;x; y; zÞ as

u ¼ rj; p ¼ �r0
@

@t
þ U

@

@x

� �
j: ð2Þ

Since the plate supports a pressure difference between its upper and lower surfaces, the function j
is discontinuous across the half-plane y ¼ 0; x > 0: By the symmetry of the problem, j is odd in y;
and hence zero on the half-plane y ¼ 0; xo0: With u ¼ ðu; v;wÞ ¼ ðjx;jy;jzÞ in Cartesian
co-ordinates, it follows that u and w are odd in y; and v is even in y: The boundary-value problem
for j; obtainable from linearized thin-aerofoil theory [8], is

1

c20

@

@t
þ U

@

@x

� �2
j�

@2

@x2
þ

@2

@y2
þ

@2

@z2

� �
j ¼ 0; ð3Þ

jy ¼ �f ðt � x=U ; zÞ ðy ¼ 07;x > 0Þ; ð4Þ

j ¼ 0 ðy ¼ 0;xo0Þ: ð5Þ

In addition, j must satisfy a radiation condition and a related causality condition, and, in order
that the acoustic energy remain finite, be of no higher order than r1=2 near the leading edge.
The above derivation of the acoustic boundary-value problem (3)–(5) makes use of the splitting

theorem [9, pp. 220–222], which asserts that, for the inviscid linear problem considered here, the
total velocity perturbation to the mean flow may be written as the sum of (a) a solenoidal vortical
part, linear in fluid-particle velocities, convected with the mean flow and with no associated
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pressure perturbation; and (b) a compressible irrotational acoustical part, to which the whole of
the pressure perturbation is due. Here (a) is represented by f ðt � x=U ; zÞ; and (b) is rj: The
vortical and acoustical parts are uncoupled except through the boundary conditions. The splitting
theorem depends on the fact that the mean flow is uniform.
For the boundary-value problem (3)–(5), the sound generated appears to radiate away from the

leading edge of the plate, x ¼ y ¼ 0; rather than from the plate surface. This is the source of the
difficulty of the problem for computational aeroacoustics codes. Such codes need exceptionally
high accuracy near aerofoil edges (or any other geometrical discontinuity) because the sound
generation process takes place on a length scale much smaller than the wavelength of the radiated
sound. The underlying difficulty is a disparity in length scales.

2.2. The acoustic field produced by an arbitrary gust

The boundary-value problem (3)–(5) may be solved for j by taking Fourier transforms in t; x;
and z and using the Wiener–Hopf technique. Frequencies will be represented by o; and
wavenumbers conjugate to z by m: The convention for Fourier transforms, represented by capital
letters, is

F ðo;mÞ ¼
Z

N

�N

Z
N

�N

f ðt; zÞeiðot�mzÞ dt dz; ð6Þ

f ðt; zÞ ¼
1

4p2

Z
N

�N

Z
N

�N

Fðo;mÞe�iðot�mzÞ do dm: ð7Þ

A full derivation of the solution of Eqs. (3)–(5) is given in Ref. [1]; here the results are
summarized. The acoustic pressure p is

p ¼
epi=4

4p5=2
r0c0M

3=2

1� M2

cos 1
2
%f

sin1=2 %y

1

%R1=2

Z
N

�N

o
c0

� �1=2
e�ioðtþM %x=c0Þ

�
Z

C

eiðo
%R=c0Þcosð%y�wÞ sin w

ð1þ M sin wÞ1=2
F ðo; ð1� M2Þ�1=2ðo=c0Þcos wÞ dw do: ð8Þ

The integration variable w is a complex angle, and the allowed w contours C depend on o: The real
part of a complex variable is indicated by a subscript r; and the imaginary part by a subscript i; so
that w ¼ wr þ iwi and o ¼ or þ ioi:When o is real and positive, one choice of C is the rectilinear
path from p� iN to iN via p and 0; this path is marked Q1Q2Q4Q5 in Fig. 2a. When o is real
and negative, the corresponding contour C is from �iN to pþ iN via 0 and p; and is marked
Q0
1Q4Q2Q

0
5 in Fig. 2b. The contour C may be deformed onto the steepest-descent path through the

saddle point of the integrand at w ¼ %y: In Fig. 2 the steepest-descent path is shown as a dashed line
from %yþ p=2� a� iN to %y� p=2þ aþ iN; where a is the phase of o and �p=2oao3p=2: Thus
the branch line of o1=2 is taken to run from 0 to �iN; indicated by the wavy line in Fig. 3; for
causality, the o contour from �N toN in Eq. (8) lies above o ¼ 0; as indicated by contour (i) in
Fig. 3, and above any singularities in the o plane introduced by F :When o is real and positive, so
is o1=2: The o contour may be deformed around the branch line, to contour (ii) in Fig. 3, provided
that allowance is taken of any poles in F crossed during the deformation.
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The branch points of ð1þ M sin wÞ1=2 in Eq. (8) are at w ¼ 2n � 1
2

� �
p7i cosh�1ð1=MÞ;

n ¼ 0;71;72;y; from which branch lines may be taken pointing away from the real w axis,
as shown by the points P03; P

0
2; P2; P3;y and the wavy lines in Fig. 2. The author is concerned only

with the ‘upper Riemann sheet’ of the w plane, on which ð1þ M sin wÞ1=2 is real and positive when
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(a)

(b)

Fig. 2. The w plane. Wavy lines: branch lines of ð1þ M sin wÞ1=2; with branch points at P2; P3; P02; P
0
3; C: contour for w

integral at fixed o in (8) when o is (a) real and positive, and (b) real and negative; dashed line: steepest-descent contour
for expfiðo %R=c0Þcosð%y� wÞg when o ¼ Oeia: The contour is drawn for a ¼ 0 in (a), and for a ¼ p in (b).
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w is real; recall that it is assumed thatMo1: The topology of the Riemann surface in w is described
in Ref. [1].
The o integration in Eq. (8) may be regarded as performed last. However, if the function F is

such that the o integration can be performed analytically for fixed w; then the o integration is
conveniently performed first; but account must be taken of the dependence on o of the w contour
C: This can often be achieved by considering o real and positive separately from o real and
negative.
If f ðt � x=U ; zÞ is real, so that F ð�o�;�m�Þ ¼ F�ðo;mÞ; where the asterisk denotes complex

conjugation, then the left and right halves of the o integral in Eq. (8), including the phase factor
epi=4; are complex conjugates. The acoustic pressure p is then real, as it must be when f is real; in
this case p is twice the real part of the right-hand side of Eq. (8), with the o contour restricted to
its part in the right half of the o plane.

2.3. The far acoustic field

When jo %R=c0jc1; the dominant contribution to the w integral in Eq. (8) comes from the
neighbourhood of the saddle point w ¼ %y: Standard theory, given in Ref. [1], shows that a simple
farfield approximation to the acoustic pressure, uniform in the polar angle %y; is

pB �
1

23=2p2
r0c0M

3=2

ð1� M2Þ
cos 1

2
%f sin1=2 %y

ð1þ M sin %yÞ1=2
1

%R

Z
N

�N

e�ioðtþM %x=c0� %R=c0Þ

� 1þ
iM

2 sin %y
c0

o %R

� �
F ðo; ð1� M2Þ�1=2ðo=c0Þcos %yÞ do: ð9Þ

Here the integration path in o is indented above any singularities in F : The second term in braces
is needed when %y is close to 0 or p: The physical interpretation of the arguments of F is that, for

ARTICLE IN PRESS

Fig. 3. The o plane. Wavy line: branch line of o1=2; (i) contour of o integral in (8); (ii) deformation of (i) around branch
line. With o ¼ Oeia; points A, B correspond to a ¼ � 1

2
p; 3
2
p:
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given o and %y; the only spanwise wavenumber heard is m ¼ ð1� M2Þ�1=2ðo=c0Þcos %y; this
wavenumber corresponds to the oblique sinusoidal gust component with the required trace
velocity along the leading edge to produce a ray from the edge to the observer position. The
absence of fractional powers of o in Eq. (9) implies that the three-dimensional sound field
produced by a gust which strikes the leading edge for only a limited time does not have a ‘tail’, i.e.,
the sound field ends suddenly. In contrast, the near field does have a tail.
The results just stated need to be modified if Fðo; ð1� M2Þ�1=2ðo=c0Þcos %yÞ is identically zero

for all except isolated values of o and %y: For example, if f ðt � x=U ; zÞ does not depend on the span
co-ordinate z; then F ðo;mÞ contains the factor dðmÞ; where d is the Dirac delta function, and the
integrand in Eq. (8) contains the factor dðð1� M2Þ�1=2ðo=c0Þcos wÞ; which is zero unless o ¼ 0 or
w ¼ p=2: In this case, the w integration in Eq. (8) may be performed analytically, to leave an
expression containing the factor ð %R sin %yÞ�1=2; i.e., %r�1=2: The physical explanation is that the factor
%R�1 in the farfield expression (9) describes spherical spreading of a sound field, in scaled
co-ordinates, whereas for a cylindrically spreading sound field, such as that produced by a gust
independent of the span co-ordinate, the radial exponent must be � 1

2
: In applications, the form of

F in Eq. (8) always leads immediately to the correct radial dependence of the field. A cylindrically
spreading sound field obtained from the farfield expression (9) has a tail; thus even if the gust ends
suddenly, the sound field does not.

3. Some three-dimensional sound fields

In this section gusts for which the vertical component of velocity is the product of a longitudinal
shape function f0ðt � x=UÞ and a transverse shape function gðzÞ are considered. Thus in Eq. (4)

f ðt � x=U ; zÞ ¼ f0ðt � x=UÞgðzÞ: ð10Þ

Three functions f0 and two functions g are considered, giving six product functions f : The three
longitudinal functions f0; referred to as single-frequency, Gaussian, and top-hat, are

f0ðt � x=UÞ ¼ v0e
�io0ðt�x=UÞ; v0e

�ð1=2Þfðt�x=UÞ=tg2 ; v0Hððt � x=UÞ=t;�1; 1Þ: ð11Þ

Here the parameters are the vertical velocity v0; the real positive frequency o0; and the positive
time interval t: The top-hat function H is defined so that Hðx; x0; x1Þ takes the value 1 for
x0oxox1 and 0 otherwise. For the Gaussian and top-hat functions f0; a measure of the
streamwise length of the gust is Ut; i.e., Mc0t: The two transverse functions g; a Gaussian and a
top-hat, are

gðzÞ ¼ e�ð1=2Þðz=aÞ2 ; Hðz=a;�1; 1Þ: ð12Þ

Here the parameter a is a positive spanwise length, measuring the width of the gust. Thus the
aspect ratio of a gust is a=ðUtÞ; i.e., a=ðMc0tÞ: The combinations of Eqs. (11) with (12) are referred
to as ‘single-frequency �Gaussian’, etc., with f0 given first. Now write g ¼ a�1

R
N

�N
gðzÞ dz; so that

g ¼ ð2pÞ1=2 for the Gaussian function gðzÞ ¼ e�ð1=2Þðz=aÞ2 ; and g ¼ 2 for the top-hat function gðzÞ ¼
Hðz=a;�1; 1Þ: The quantity g is referred to as the transverse shape integral.
The Fourier transform F of Eq. (10) when x ¼ 0 is

F ðo;mÞ ¼ F0ðoÞGðmÞ; ð13Þ
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where

F0ðoÞ ¼
Z

N

�N

f0ðtÞeiot dt; GðmÞ ¼
Z

N

�N

gðzÞe�imz dz: ð14Þ

Thus corresponding to Eqs. (11) and (12)

F0ðoÞ ¼ 2pv0dðo� o0Þ; ð2pÞ1=2v0te�ð1=2ÞðotÞ2 ; 2v0o�1 sinðotÞ ð15Þ

and

GðmÞ ¼ ð2pÞ1=2ae�ð1=2ÞðmaÞ2 ; 2m�1sinðmaÞ: ð16Þ

The far acoustic field (9), with the second term in braces neglected and F of the form (13), is

pB �
1

23=2p2
r0c0M

3=2

1� M2

cos 1
2
%f sin1=2 %y

ð1þ M sin %yÞ1=2
1

%R

�
Z

N

�N

e�ioðtþM %x=c0� %R=c0ÞF0ðoÞGðð1� M2Þ�1=2ðo=c0Þcos %yÞ do: ð17Þ

When the integral is evaluated with F0 and G given by Eqs. (15) and (16), it is convenient to write
the far field in terms of a dimensionless shape factor S defined so that

pBr0c0 %v0M
3=2 cos

1
2
%f sin1=2 %y

ð1þ M sin %yÞ1=2
%a

%R
S: ð18Þ

Here %v0 ¼ ð1� M2Þ�1=2v0 and %a ¼ ð1� M2Þ�1=2a; in accordance with the aeroacoustic scaling for
lengths transverse to the mean flow. The six far fields are as follows.

3.1. Single-frequency � Gaussian

The vertical component of gust velocity is v0e
�io0ðt�x=UÞe�ð1=2Þðz=aÞ2 ; and the shape factor of the

far acoustic field is

S ¼ �p�1=2 exp � 1
2
ðo0 %a=c0Þ

2 cos2 %y
	 


e�io0ðtþM %x=c0� %R=c0Þ: ð19Þ

Call the plane y ¼ 1
2
p the vertical plane (see Fig. 2). Since %y ¼ y when y ¼ 0; 1

2
p; p; it follows that

as the observation direction varies from the vertical plane towards the leading edge so cos2 %y
increases from 0 to 1 and the exponential term in Eq. (19) decreases from 1 to exp � 1

2
ðo0 %a=c0Þ

2
	 


:
Thus if o0 %a=c0{1; the shape factor S is approximately independent of y; and from Eq. (18) the
dependence of the farfield directivity on y reduces to fðsin %yÞ=ð1þ M sin %yÞg1=2: If o0 %a=c0c1; the
acoustic field is ‘super-directive’, being strongly peaked on the vertical plane; the acoustic field
then decays exponentially rapidly with angle when jcos %yj exceeds values of order ðo0 %a=c0Þ

�1:Near
the vertical plane one may write cos %yC� %y� 1

2
p

� �
; so that the exponential factor in Eq. (19) is

then approximately expf� 1
2
ðo0 %a=c0Þ

2 %y� 1
2
p

� �2
g; i.e., in the super-directive regime o0 %a=c0c1 the

acoustic field is effectively confined to %y� 1
2 p

�� �� ¼ Oððo0 %a=c0Þ
�1Þ:
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3.2. Single-frequency � top-hat

The vertical component of gust velocity is v0e
�io0ðt�x=UÞHðz=a;�1; 1Þ; and the shape factor of

the far acoustic field is

S ¼ �
21=2

p
sinððo0 %a=c0Þcos %yÞ
ðo0 %a=c0Þcos %y

e�io0ðtþM %x=c0� %R=c0Þ: ð20Þ

As the observation direction varies from the vertical plane %y ¼ 1
2
p towards the leading edge

%y ¼ 0; p the second fraction in Eq. (20) varies from 1 to sinðo0 %a=c0Þ=ðo0 %a=c0Þ: Thus for o0 %a=c0{1
this fraction is approximately constant at the value 1, whereas for o0 %a=c0c1 the fraction
represents a multi-lobed farfield acoustic directivity pattern, the lobes decaying in amplitude
away from the vertical plane. Such a multi-lobed pattern is familiar in high-frequency
acoustics (e.g., for a high-frequency oscillating piston in a baffle), where it often occurs as an
interference pattern between sound fields produced at the edges of a source region. Here, the
shape factor (20) arises from the gust vorticity, which is of delta-function form on the planes
z ¼ 7a; and from the fact that sound is produced only at the leading edge of the aerofoil. Thus
the sound sources are effectively at the edges of the top-hat on the leading edge, i.e., at ðx; y; zÞ ¼
ð0; 0;7aÞ:

3.3. Gaussian � Gaussian

The vertical component of gust velocity is v0e
�ð1=2Þfðt�x=UÞ=tg2e�ð1=2Þðz=aÞ2 and the shape factor of

the far acoustic field is

S ¼ �
1

p1=2
f1þ ð %a=ðc0tÞÞ

2 cos2 %yg�1=2 exp �
1

2

fðt þ M %x=c0 � %R=c0Þ=tg
2

1þ ð %a=ðc0tÞÞ
2 cos2 %y

( )
: ð21Þ

As the observation direction varies from the vertical plane %y ¼ 1
2
p towards the leading edge

%y ¼ 0; p the factor 1þ ð %a=ðc0tÞÞ
2 cos2 %y varies from 1 to 1þ ð %a=ðc0tÞÞ

2: Thus for %a{c0t;
corresponding to a long thin gust aligned at right angles to the leading edge, the factor is
approximately constant at the value 1, whereas for %acc0t; corresponding to a long thin gust
aligned parallel to the leading edge, the factor varies considerably, and is approximately
ð %a=ðc0tÞÞ

2 cos2 %y where jcos %yj exceeds the small value ð %a=ðc0tÞÞ
�1; i.e., where %y� 1

2
p

�� �� is greater
than order ð %a=ðc0tÞÞ

�1: Hence as in Section 3.2 the far acoustic field depends strongly on the
observation angle %y when the length of leading edge ‘wetted’ by the gust is large, i.e., when there
are acoustic sources well separated in space. Although the aspect ratio of the gust is a=ðMc0tÞ; the
acoustically important quantity, accounting for the flow, is %a=ðc0tÞ:
For %a of order at most c0t; the factor � 1

2
fðt þ M %x=c0 � %R=c0Þ=tg

2 in the exponent of Eq. (21)
shows that at a fixed observation point the acoustic field is negligible except for a time interval of
order t: The reason is that the gust velocity at the leading edge x ¼ 0; being proportional to
e�ð1=2Þðt=tÞ2 ; provides an acoustic source of significant strength only for a time interval of order t;
the factor gives the effect of this source in terms of the retarded time t þ M %x=c0 � %R=c0 for
acoustic signals in a uniform flow. There is no large-time tail to the significant acoustic field,
because the field is spreading spherically. When %a significantly exceeds c0t; the exponent in
Eq. (21) shows that the above time interval t is replaced by ð %a=c0Þjcos %yj; i.e., the time taken for a
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signal travelling at speed c0 to traverse a distance %ajcos %yj; this is an ‘aeroacoustically scaled’
version of a familiar result for no mean flow, because %ajcos %yj is the scaled length of the projection
of the source region onto the radius vector from the source region to the observer.

3.4. Gaussian � top-hat

The vertical component of gust velocity is v0e
�ð1=2Þfðt�x=UÞ=tg2Hðz=a;�1; 1Þ; and the shape factor

of the acoustic far field is

S ¼ �
1

p1=2
fFðTþÞ � FðT�Þg
ð %a=ðc0tÞÞcos %y

; ð22Þ

where

T7 ¼ ðt þ M %x=c0 � %R=c0Þ=t7ð %a=ðc0tÞÞcos %y ð23Þ

and

FðxÞ ¼
1

ð2pÞ1=2

Z x

�N

e�ð1=2Þs2 ds ¼
1

2
ð1þ erfð2�1=2xÞÞ: ð24Þ

When ð %a=ðc0tÞÞjcos %yj{1; the numerator FðTþÞ � FðT�Þ of Eq. (22) is approximately ðTþ �
T�ÞF0 1

2
ðT� þ TþÞ

� �
; where the dash denotes derivative. Since F0ðxÞ ¼ ð2pÞ�1=2e�ð1=2Þx2 ; the shape

factor becomes SC� 21=2p�1e�ð1=2ÞfðtþM %x=c0� %R=c0Þ=tg2 : In this limit ð %a=ðc0tÞÞjcos %yj{1; the shape
factors (21) for the Gaussian � Gaussian gust and Eq. (22) for the Gaussian � top-hat gust may
be unified by writing each in terms of the transverse shape integral g ¼ a�1

R
N

�N
gðzÞ dz introduced

after Eq. (12). Each becomes SC� 2�1=2p�1ge�ð1=2ÞfðtþM %x=c0� %R=c0Þ=tg2 : Thus for a gust of small
enough spanwise extent, the far acoustic field depends on gðzÞ through the integral

R
N

�N
gðzÞ dz

rather than through the shape of gðzÞ: For a gust of large spanwise extent, the shape of gðzÞ makes
a difference. This may be checked by comparing Eqs. (21) and (22) for ð %a=ðc0tÞÞjcos %yjc1; using
where convenient the approximations FðxÞC1� ð2pÞ�1=2x�1e�ð1=2Þx2 for xc1 and FðxÞC
ð2pÞ�1=2jxj�1e�ð1=2Þx2 for x{� 1:

3.5. Top-hat � Gaussian

The vertical component of gust velocity is v0Hððt � x=UÞ=t;�1; 1Þe�ð1=2Þðz=aÞ2 ; and the shape
factor of the acoustic far field is

S ¼ �p�1=2fFð *TþÞ � Fð *T�Þg; ð25Þ

where

*T7 ¼
t þ M %x=c0 � %R=c07t

ð %a=c0Þjcos %yj
: ð26Þ

The difference *Tþ � *T� ¼ fð2 %a=ðc0tÞÞjcos %yjg
�1 is large when ð %a=ðc0tÞÞjcos %yj is small, in contrast to

the difference Tþ � T� in Section 3.4. Thus the acoustic far field produced by a top-hat �
Gaussian gust is very different from that produced by a Gaussian � top-hat gust. The reason lies
in the different directions of the vortex lines corresponding to the surfaces of discontinuity in the
gust velocity field; for the top-hat � Gaussian gust these vortex lines are parallel to the leading
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edge of the aerofoil, whereas for the Gaussian � top-hat gust they are parallel to the stream
direction. The approximations to FðxÞ given at the end of Section 3.4 show that the shape factor
(25) simplifies if either or both of *Tþ and *T� is large and positive or large and negative; the shape
factor also simplifies if *Tþ � *T� is not too large, as in the relations for F noted after Eq. (24).
Since *T7 changes sign when t þ M %x=c0 � %R=c0 passes through 7t; the shape factor is a
surprisingly complicated function of position. It is simplest to deal separately with the regions of
space in which %R � M %x � c0t is less than �c0t; between �c0t and c0t; and greater than c0t; and
for each region, with its corresponding signs of *Tþ and *T�; determine the range of values of
ð %a=ðc0tÞÞjcos %yj; in relation both to jðt þ M %x=c0 � %R=c0Þ=t71j and to 1, for which the expression
Fð *TþÞ � Fð *T�Þ simplifies. Only a simple limit when %R � M %x � c0t is between �c0t and c0t; and
the observation position is close enough to the vertical plane %y ¼ 1

2 p that ð %a=ðc0tÞÞjcos%yj{jðt þ
M %x=c0 � %R=c0Þ=t71j will be presented. Then *Tþc1 and *T�{� 1; so that Fð *TþÞC1 and
Fð *T�Þ{1; whence SC� p�1=2:

3.6. Top-hat � top-hat

The vertical component of gust velocity is v0Hððt � x=UÞ=t;�1; 1ÞHðz=a;�1; 1Þ; and the shape
factor of the acoustic far field is

S ¼ �
1

21=2p
H0ðTþþÞTþþ � H0ðTþ�ÞTþ� � H0ðT�þÞT�þ þ H0ðT� �ÞT� �

ð %a=ðc0tÞÞcos %y
; ð27Þ

where

T77 ¼ ðt þ M %x=c0 � %R=c0Þ=t717ð %a=ðc0tÞÞcos %y ð28Þ

and H0 is the Heaviside step function, defined by H0ðxÞ ¼ 0 for xo0; and H0ðxÞ ¼ 1 for x > 0: The
numerator of Eq. (27) is zero when T77 are all positive or all negative. Hence the sound field
begins and ends suddenly, i.e., does not have a tail. The vortex lines in the gust form horizontal
rectangles, of size 2Ut by 2a; together forming a vertical rectangular tube.
When %y is close to 0 or p; i.e., when the observation point is close to the leading edge, the above

formulae need to be modified to take account of the second term in braces in Eq. (9).

4. Some two-dimensional sound fields

Gusts for which the vertical component of velocity is f0ðt � x=UÞ are now considered. Thus in
Eq. (10) we put gðzÞ � 1; so that instead of Eq. (16) GðmÞ ¼ 2pdðmÞ; and Eq. (13) becomes
Fðo;mÞ ¼ 2pF0ðoÞdðmÞ: In expression (8) for p; the w integration may be performed analytically,
to give

p ¼ �
epi=4

2p3=2
r0c

3=2
0 M3=2

ð1� M2Þ1=2ð1þ MÞ1=2
cos 1

2
%f

%r1=2

Z
N

�N

o�1=2e�ioðtþM %x=c0�%r=c0ÞF0ðoÞ do: ð29Þ

The integration path passes above o ¼ 0 and above any singularities or branch-points in F0:
Eq. (29) is exact within the present linear theory, i.e., is not simply a farfield approximation. By
contrast, for the three-dimensional examples considered in Section 3, the w integration cannot be

ARTICLE IN PRESS

C.J. Chapman / Journal of Sound and Vibration 270 (2004) 495–508 505



performed analytically, and Eq. (8) cannot then be reduced to a single integral except in the far
field.
Evaluation of Eq. (29) for the single-frequency, Gaussian, and top-hat gusts (11), with F0ðoÞ as

in Eq. (15), gives the following fields.

4.1. Single frequency

The vertical component of gust velocity is v0e
�io0ðt�x=UÞ and the pressure field is

p ¼ �
epi=4

p1=2
r0c0 %v0M

3=2

ð1þ MÞ1=2
ðcos 1

2
%fÞ

c0

o0 %r

� �1=2
e�io0ðtþM %x=c0�%r=c0Þ: ð30Þ

This expression, evaluated at f ¼ 0; 2p; gives the standard formula for the loading on a rigid half-
plane when struck by a sinusoidal gust.

4.2. Gaussian

The vertical component of gust velocity is v0e
�ð1=2Þfðt�x=UÞ=tg2 ; and the pressure field is

p ¼ �
1

2

r0c0 %v0M
3=2

ð1þ MÞ1=2
ðcos 1

2
%fÞ

c0t
%r

� �1=2
hðTÞ; ð31Þ

where

T ¼ ðt þ M %x=c0 � %r=c0Þ=t; ð32Þ

hðTÞ ¼ jT j1=2e�ð1=4ÞT2

I�1=4
1
4

T2
� �

þ sgnðTÞI1=4 1
4

T2
� �	 


; ð33Þ

and I71=4 are modified Bessel functions of order 7
1
4
: Limiting forms of hðTÞ are the tail

hðTÞB23=2p�1=2T�1=2 ðT-NÞ; ð34Þ

the precursor

hðTÞB2p�1=2jT j�1=2e�ð1=2ÞT2

ðT-�NÞ; ð35Þ

and small-T approximation

hðTÞ ¼ e�ð1=4ÞT2

ð21=4p�1G 1
4

� �
þ 23=4p�1G 3

4

� �
T þ OðT4ÞÞ ðT-0Þ: ð36Þ

The inverse square-root tail (34) is typical of a cylindrically spreading wave field. In contrast, a
spherically spreading field typically does not have a tail (cf. Section 3.3).

4.3. Top-hat

The vertical component of gust velocity is v0Hððt � x=UÞ=t;�1; 1Þ; and the pressure field is

p ¼ �
2

p
r0c0 %v0M

3=2

ð1þ MÞ1=2
ðcos 1

2
%fÞ

c0t
%r

� �1=2
*hðTÞ ð37Þ
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with T as in (32) and

*hðTÞ ¼ H0ðT þ 1ÞjT þ 1j1=2 �H0ðT � 1ÞjT � 1j1=2; ð38Þ

where H0 is the Heaviside step function. Thus *hðTÞ ¼ 0 for To� 1; and the tail is *hðTÞ ¼
T�1=2 þ 1

8
T�5=2 þ? for Tc1: Again, this two-dimensional field has an inverse square-root tail.

5. Practical considerations

A desirable feature of a benchmark problem for testing a computer code is that the statement of
the problem should contain a rich set of numerical parameters which can be varied in relation to
the numerical parameters of the code, e.g., grid size, time step, and amount of artificial viscosity.
For a computational aeroacoustic code, the conclusion of a benchmark test would then be that for
given grid size, etc., the code can accurately determine the sound generation process and the
acoustic directivity in a certain range of wavenumbers and frequencies, and can determine
impulsive sound fields up to a certain level of accuracy.
The above consideration has been a primary factor determining the choice of the nine examples

of sound fields given in Sections 3 and 4. Thus examples involving delta-functions have not been
presented, but instead ‘rise-time’ or ‘width’ parameters such as t and a have been retained. The
user of a benchmark test would need to make an informed choice of t and a; as well as the
frequency o0; in relation to code parameters. The formulae above contain the non-dimensional
parameters %a=ðc0tÞ and o0 %a=c0; and the non-dimensional variables %R=ðc0tÞ; %r=ðc0tÞ; o0 %R=c0;
o0 %r=c0: All formulae contain as a parameter the Mach number M through the similarity variables
indicated by the bar notation; the formulae are not restricted to low Mach numbers, only by the
requirement Mo1: The list of nine examples may readily be extended, because the general
integrals (8) and (9) are so user-friendly. For example, the discontinuities in the top-hat gust
shapes may be smoothed by linear or polynomial ramps of specified rise-time or thickness; the
farfield integral (9) can still be evaluated analytically. Thus the formulae offer scope for exploring
a large parameter space.
One testable aspect of a code is the determination of the far acoustic field from nearfield data.

Section 4 gives two-dimensional fields everywhere in space, including the correct singular
behaviour as the leading edge is approached. A cylindrical control surface of arbitrary radius may
be placed around the leading edge, and data on this surface used to compute the far field. The
accuracy of the computation as a function of control-surface radius is then readily checked. For
three-dimensional fields, involving a spherical control surface, the test procedure is similar, except
that the exact result for the near field requires numerical evaluation of integral (8). This evaluation
is immediate, especially if the w contour C is deformed onto the steepest-descent path as shown in
Fig. 2, since the integrand then decays exponentially with distance from the real w axis. By varying
the gust parameters, far acoustic fields with arbitrarily many lobes in planes containing the
leading edge may be obtained, providing tests of arbitrary difficulty for the computer code.
This paper is limited to leading-edge noise; and the aerofoil has been taken to be thin, flat, and

at zero angle of incidence. As ever, the price paid for an analytical result is simplified geometry.
The benchmark tests made possible by our analytical results may prove useful as ‘necessary’
checks of computational aeroacoustics codes, even though they cannot be ‘sufficient’.
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